N/

Perl Based Ms-word

Documents Search Engine

Based on Full Text Searching in
Perl by Tim Kientzle

Dr.Dobbs Jan 1999

N

Roey Almog — Perl Mongers meeting on 12 June 2003
roey@arnet.co.il

/4R

Agenda

#\What was the mission?
#The solution.

Alternatives & why was Perl used?
#\What are the main components?

#Steps of implementation (long so we'll
probably skip some parts).

#Summary.

The Mission

/4R

‘@ A solution to perform keyword search in a
collection of about 30,000 MS-Word
documents.

The files are spread a/l over the network.

The first solution was MS Windows built in
search that was slowwwwww. And does not
support keyword search (as far as I know...).

The Proposed Solution

@ Create a list of all ms-word files in the network.

Create a database where the keys are the
words and the values are the documents
containing this word. We estimated the index
will hold 100,000 — 200,000 words, with values

containing 1,000 or more documents.

A web site will provide access to the keyword
search using a CGI script. w

We assumed the search will be -
fast, something like a minute or
so... and the indexing will be
done every night so it can be slow. %%

Implementation Options

/4R

#Database application using something
like FoxPro/Access/... (it is a database

after all)

Custom application using C++ (fast) or
VB (easy).

#Using scripting language like Perl or
Python (lots of built in features...).

Why Perl?

/4R

J@The time frame given was small — 10 days.

@ ActivePerl for win32 has an easy to use COM
support that will automate the conversion of
DOC format to some thing manageabile...

I heard that Berkeley DB supported by Perl is
excellent choice for the words/documents DB.

And... there was this article in
dr.Dobbs...actually it did what was needed in
Perl - there is always someone who did it in
Perl before.. And it was fast — seconds for a
search! | /_/‘\i),;;@:
Easy CGI script development. 0

A

What Are the Building Blocks?

/4R

File::Find - searching for the files in the
network.

#Win32::0LE to automate ms-word to export
the documents to HTML format.

DB file to store the words vs. Documents lists.

#® CGI & HTML:: Template to create web server
search script dynamic pages.

Internet — to download Tim Kientzle’s article
sources that reduced the development cycle.

I ' , Software Tools for the
l.. Professional Programmer

First Step, Collecting Files

File::Find made it easy:
my $FILE_TYPE = "\.doc\$";
find(\ &ListFiles_wanted, $SROOT_DIRECTORY);

sub ListFiles_wanted

{
if($File::Find::name !~ /$FILE_TYPE/i){
return;
bs
push @all_files, $File::Find::name ;
hs

Security problems are handled
gracefully by file::find with no extra work

Takes ~two hours.

Second Step — From DOC->HTML

4@ Save As HTML using Word 2000, yes it works. I
did it 30,000 times... ©

Win32::0LE has all is needed:
$app = Win32::0OLE->new('Word.Application');
$app->Documents->0Open($docfile, O, O, O,
$pswdl, $pswd2, O,
$pswdl, $pswd2);
$doc = $app->ActiveDocument;

$doc->SaveAs($target, $format); #$format = 8;
(HTML)

$doc->Close;
$app->Quit;
undef $app;

‘Second Step, cont

@It worked for several documents in a loop,
but in “field tests” it failed again and
again! Locked files, Word closed un-
expectedly, and all sorts of other
problems...so

= | put all Word actions in eval().

= checked for problems and used
Win32::OLE->LastError();

m | close word and restart it on every problem,
after every “big” file, every 50 files. ’()/

m [try to re-cycle existing instance usmg D
Win32::0LE->GetActiveObject() (

Second Step, conclusion

@ Worked for 99.99993% of the documents. (3
documents just would not agree to convert
without manual intervention...).

It takes about 10 hours to convert 30,000
documents.

Something leaked memory. I find it very
hard to find what is leaking so I closed the
Perl processes after every 2000 documents (it
took five days to debug it to this point).

The conversion is done only for new files so
now it takes something like two hours of file
collecting and ~5 seconds per conversion.

Third step — indexing

@ All the credit goes to Tim, read the article...

We open the HTML file and remove all tags
and clean off some dust:

if (open(HTML_FILE,$indexURL))
{
local $/;
s$words = <HTML_FILE>;
close(HTML_FILE);
s
$words =~ s/<[A>]*|>//9; # no more tags
swords =~ s/ / /9;
$words =~ s/[\'\"1//9; # no more " "
swords =~ s/\.(\s+)/%$1/9g; # no more . (1.1)

Lower case every thing too...

/4R

Third step, cont

@Get the words list:

my(@words) = split(/[~*A-Za-z0-9\+\-
\-\@_\$\/\xcO-\xff1+/,$words);

#Amazing what a regex may look like...

When I need something like this I search
regex FAQ lists, there is always something
I miss...

#Now remove junk - grep:
@words = grep { length($_) < 40 } @words;

Third step, cont

/4R

‘@Remove duplicates (precedence):

my(%worduniq); # for unique-ifying word list

@words = grep { $worduniq{$_}++ == 0 } (sort
@words);

= The red phrase above can be hazardous to
your health

Every "word" must have at least one alphanumeric
@words = grep { /[a-zA-Z0-9\xcO0-\xff]/ } @words;
Strip out single-character "words"

@words = grep { length > 1 } @words;

Third step, cont

/4R

@®We use Berkeley DB file to store the
word index as a binary tree, the keys
are the words and the documents ID’s
are the values.

#The documents ID’s are the file index in
the file list from step one.

#From Perl point of view a DB file looks
like @ map.

Third step, cont

@ The stored information looks like this
Roey => 10, 12, 3044, 5667, 3000
Almog => 768, 7657, 4365, 3355

The we also store the Document name/ID
information in the same database

10 => C:\docs\roey.doc

We save it at the same file by packing the file

name with preceding zero.
$index{"\0".pack("N",$fileName)} = $fileID;

We use temporary map to cache things to
improve speed.

/4R

Third step, cont

my($wordsIndexed) = 0O;
foreach $word (@words) {
swordsIndexed++;

my($a);
if($wordCache{$word}) {

$a = $wordCache{$word};

bs

use 32 bit unsigned long big indian.

$a .= pack "N", "s$fileKey";

swordCache{$word} = $a;
by
#9% wordCache, sync to disk
if(++$wordCacheCount >= 500) {

&FlushWordCache();

h

/4R

Third Step, cont

@Tim provided some other goodies like

= Synonyms, you search “Tel Aviv sea” and
get “sewage” too...

= Prevented indexing of common words (the,
that, he, it etc...).

= You search for “n9ann” and get “notebook”

too... if you create a dictionary. ,/7:

Third step, conclusion

1@ Tim’s article provide some helpful information
regarding Berkeley DB (caching, page sizes
etc...)

All in all most of the indexing was cooked. I
did not do much here.

@ It worked very well, it took ~10 hours to
process all the files in the network for the
first time. \

It usually takes 1 - 5 seconds to process * ;
HTML file.

D

,))

»

)
\

4

Last Step — the search

/4R

@For every word search we get a list of
results.

#\We intersect the the lists.
Extracts the filenames.

#Display them in a list with using
HTML:: Template.

Summary

/4R

@ It is impossible to achieve such results in the
given time frame using other alternatives

= The complete application (indexer & search) worked
well in less than 5 partial working days.

= [wish C++ had something like CPAN,

= The project was later expanded with new features
(phrases search, archive and more...) using Perl.

Detecting memory leaks?

Perl is Q&D enabled especially for occasional
users like my self,

Powerful development environment missing?

Links

/4R

#Dr. Dobbs Article — (if you are a subscriber)
http://www.ddj.com/articles/1999/9901/
4 Dr. Dobbs Source Code.

http://www.ddj.com/ftp/1999/1999 01/perlsrch.zip

